University of Cambridge

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

In this interview, David Zierler, Oral Historian for AIP, interviews Thomas Ramos, a physicist detailed to the Principal Associate Director for Weapons and Complex Integration at Lawrence Livermore Laboratory. Ramos discusses his current work writing an unclassified history of the weapons program at Livermore and the broad perspective this has given him on the Laboratory from the postwar era to the present. Ramos recounts his childhood in Brooklyn and his military enlistment after high school, which led to a tour in South Korea and then an order from West Point to pursue a master’s degree in nuclear physics. He discusses his graduate work at MIT and his research on bubble chamber experiments at Fermilab and Argonne before being ordered back to West Point to teach nuclear science. Ramos describes the opportunities leading to his appointment at Livermore four years later and his initial work on the X-ray laser program and the origins of the SDI program. He discusses the impact of the end of the Cold War on the Laboratory and the extent to which Reagan’s military spending accelerated the Soviet collapse. Ramos discusses his work at the Pentagon as a legislative affairs officer for the Assistant Secretary of Defense for Atomic Energy, and he explains Livermore’s increasing involvement in monitoring nuclear proliferation among terrorist groups and rogue states. He describes his transition to counterproliferation as a result of the end of nuclear testing at Livermore and the signification of the creation of the National Ignition Facility. Ramos describes the transition to his current work documenting Livermore’s history, and he reflect broadly at the end of the interview on how Livermore has adapted to evolving security threats over its long history.

Interviewed by
Gareth McKinley
Interview date
Location
Norton House Hotel, The Mumbles, Swansea
Abstract

Transcript of a conversation between Gareth McKinley (SOR Historian) and Prof Ken Walters FRS at Norton House Hotel, The Mumbles, Swansea on July 10, 2018, on the eve of a meeting of the Institute of Non-Newtonian Fluid Mechanics (INNFM) to be held at the University of Swansea. Ken discusses his life from growing up in Wales to his PhD with James G. Oldroyd, his time in the United States at UW Madison and his career at the University of Wales – Aberystwyth. He also discusses his time as president of the British Society of Rheology (1974-75) and also as inaugural president of the European Society of Rheology (1997), starting the Journal of Non-Newtonian Fluid Mechanics (1976), and the organization of the very successful Dynamics of Complex Fluids meeting (1996) at the Isaac Newton Institute at the University of Cambridge.

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Location
Video conference
Abstract

The interviewee has not given permission for this interview to be shared at this time. Transcripts will be updated as they become available to the public. For any questions about this policy, please contact .

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Dale Van Harlingen, Professor of Physics at the University of Illinois, Urbana-Champaign. He recounts his childhood in Ohio and his undergraduate education at OSU in physics and his early work on SQUIDS. Van Harlingen discusses his mentor Jim Garland, and he explains his decision to stay at OSU for graduate school to develop SQUID devices to make phase-sensitive measurements. He explains the opportunities that gained him a postdoctoral appointment at the Cavendish Laboratory in Cambridge where he developed his expertise in the Josephson Effect, and where he met John Clarke, who offered him a subsequent postdoctoral position at UC Berkeley. Van Harlingen describes his foray using SQUIDS to push the quantum limit, and he explains his decision to join the faculty at Illinois, where he was impressed both with the quality of the research and how nice everyone was. He describes joining the Materials Research Laboratory and the development of the Micro and Nanotechnology Laboratory, and he conveys his admiration for Tony Leggett. Van Harlingen discusses his research in NMR microscopy, grain boundary junctions, scanning tunneling microscopy, vortex configurations, and he describes his current interest in unconventional superconductors. At the end of the interview, Van Harlingen conveys his excitement about the national quantum initiative as a major collaboration between universities and National Labs, and he explains his motivation to understand if Majorana fermions actually exist.

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, Elizabeth Simmons discusses: role as Executive Vice Chancellor (EVC) at UC San Diego; impact of COVID-19; current developments in the field that she finds exciting; family background and childhood; experiences as a woman in physics; M.Phil at Cambridge in Volker Heine’s group working on condensed matter theory; study of condensed matter theory at Harvard; Howard Georgi; work on models exploring electroweak symmetry breaking and quark masses; opinions on why SSC died and the impact on the field; collaboration with Cynthia Brossman on the Pathways K12 outreach project supporting girls’ involvement in STEM; research on the top quark; interest in supersymmetry and physics Beyond the Standard Model (BSM) using a Higgless model; papers with husband Sekhar Chivukula and others exploring the idea of a five-dimensional spacetime; leading Lyman Briggs College; MOOSE model; reaction to the discovery of the Higgs boson; post-Higgs work distinguishing which models can and can’t be consistent with the data; consulting work for the American Physical Society (APS) and the wider academic and scientific community on matters of equity, diversity, and inclusion (EDI); advocacy on behalf of the LGBTQ community; advisory work for the Center for High Energy Physics in China; collaborations at the Aspen Center for Physics to support EDI in the field; role creating career development workshops for women at the International Center for Theoretical Physics; work increasing EDI in curricula and faculty hiring; building cross-field collaboration at UCSD; collaboration with other EVCs in the UC system; current physics work on model building and how to get the most out of available data; and current work on graviton-graviton scattering. Toward the end of the interview, Simmons reflects on intersectionality and the value of diversity in science and discovery.

Interviewed by
David Zierler
Interview date
Location
Teleconference
Abstract

In this interview, Jo Dunkley, professor of physics and astrophysical sciences at Princeton, discusses her life and career. Dunkley describes the nature of this dual appointment and she recounts her childhood in London and her all-girls school education. She describes her undergraduate experience at Cambridge and the formative influence of Malcolm Longair’s class on relativity. Dunkley explains that pursuing a graduate degree in physics was not a foregone conclusion, and that she initially considered a career in international development. She discusses her motivation to study under the direction Pedro Ferreira at Oxford to work on the cosmic microwave background experiments. Dunkley conveys the immediate importance of Wilkinson Microwave Anisotropy Probe (WMAP) on her thesis research and the opportunities that led to her postdoctoral work at Princeton to work with David Spergel and Lyman Page on WMAP. She explains her decision to return to the Oxford faculty to continue working with Ferreira and the origins of her involvement in the Atacama Cosmology Telescope project and subsequently the Large Synoptic Survey Telescope (LSST, now the Vera C. Rubin Observatory) endeavor and her work on it with Ian Shipsey. Dunkley discusses the challenges in maintaining a work-life balance during maternity leaves at Oxford and then at Princeton, after she joined the faculty in 2016. She describes the many exciting projects her graduate students are working on and she explains her current interests in understanding the Hubble constant. At the end of the interview, Dunkley surveys the major unanswered questions in contemporary cosmology, the viability of discovering the mass of neutrinos, and what the interplay between theory and experimentation might hold for the future.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Renata Wentzcovitch, professor of Applied Physics and Applied Mathematics and Earth and Environmental Sciences at Columbia University. Wentzcovitch recounts her childhood in Brazil, and she describes how her grandfather sparked her interest in science early on. She describes her education at the University of São Paulo’s Institute of Physics where she developed an interest in density functional theory. Wentzcovitch discusses her interest in pursuing a graduate degree in the United States, and her decision to attend UC Berkeley and study under the direction of Marvin Cohen. She describes her thesis research on pseudopotential plane-wave codes and super-hard materials such as boron nitride and diamonds. Wentzcovitch explains the impact of High Tc Superconductivity on both her career and the field generally, and she describes her postdoctoral research with joint appointments at Brookhaven and Stony Brook on evolving electronic wavefunctions via classical dynamics. She discusses her subsequent work with Volker Henie at Cambridge to study silicate perovskite, which in turn led to her first faculty appointment at the University of Minnesota. Wentzcovitch describes the importance of Minnesota’s Supercomputing Institute for her research, and she explains how her research focused more centrally on geophysics and the thermo-elasticity of minerals and their aggregates. She describes the founding of the Virtual Laboratory for Earth and Planetary Materials and explains her decision to join the faculty at Columbia and her involvement with VLab and the study of exchange-correlation functionals to address electronic interactions. At the end of the interview, Wentzcovitch discusses her current work on developing codes for thermodynamic computations and seismic tomography, and she conveys the value of pursuing international collaborations to fit her broad and diverse research agenda.

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Sunil Sinha, Distinguished Professor Emeritus in the Department of Physics at the University of California, San Diego. Sinha describes how he has been able to keep up his research during the COVID pandemic, and he recounts his childhood in Calcutta where he attended Catholic schools and developed his interests in math and science. He describes his undergraduate education at Cambridge where he became interested is quantum mechanics, and he explains his decision to remain there for graduate work to conduct research on neutron scattering under the direction of Gordon Squires. Sinha explains the centrality of neutron scattering to the development of condensed matter physics, and he describes the opportunities leading to his postdoctoral research at Iowa State. He discusses his work at Ames Lab and Argonne Lab, where he continued to pursue fundamental research on neutron scattering and rare earth materials. Sinha describes his research at Exxon Lab, and the start of the revolution in soft matter physics, and he explains his decision to return to Argonne at the beginning of the Advanced Photon Source project. He discusses his subsequent move to San Diego where he enjoyed a joint appointment with Los Alamos Lab and when he was able to concentrate more fully on teaching after a career spent mostly in laboratory environments. At the end of the interview, Sinha describes his current interest in spin glasses, exchange biases, and jamming theoretical computer simulations, and he explains the reason for the enduring mystery of the mechanism for high-temperature superconductivity. 

Interviewed by
David Zierler
Interview date
Location
Video conference
Abstract

Interview with Lu Sham, Distinguished Professor of Physics Emeritus, University of California at San Diego. Sham recounts his childhood in Hong Kong and he describes the legacy of Japanese rule from World War II. He describes his early interests in math and he explains his decision to pursue a higher education in England at Imperial College. Sham discusses his motivation to conduct graduate work at Cambridge University and to study under Nevill Mott on the first principle method calculating the electron contribution to lattice vibration. He describes the help provided by John Ziman to secure his postdoctoral position at UC San Diego to work with Walter Kohn, and he describes the foundational collaboration and research that went into the Kohn-Sham equation and how this work builds on the classic debate between Einstein and Bohr. He describes the opportunities leading to his faculty appointment and eventual tenure on the physics faculty, and he explains the benefits of spending summers doing research at Bell Labs. Sham discusses his contributions to research on semiconductors, quantum computing, and density-functional theory. He describes his more recent interest in optics and the formative work he has done with graduate students and postdoctoral researchers over the years. Sham discusses his administrative service as department chair and Dean of Science. At the end of the interview, Sham asserts that the future of condensed matter physics holds limitless possibilities, and that improvements in semiconductor materials will push quantum information abilities in exciting and unforeseen directions.